``Compress and Eliminate” Solver for Symmetric Positive Definite Sparse Matrices
نویسندگان
چکیده
منابع مشابه
"Compress and eliminate" solver for symmetric positive definite sparse matrices
We propose a new approximate factorization for solving linear systems with symmetric positive definite sparse matrices. In a nutshell the algorithm is to apply hierarchically block Gaussian elimination and additionally compress the fill-in. The systems that have efficient compression of the fill-in mostly arise from discretization of partial differential equations. We show that the resulting fa...
متن کاملRiemannian Sparse Coding for Positive Definite Matrices
Inspired by the great success of sparse coding for vector valued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extende...
متن کاملsymPACK: a solver for sparse Symmetric Matrices
Systems of linear equations arise at the heart of many scientific and engineering applications. Many of these linear systems are sparse; i.e., most of the elements in the coefficient matrix are zero. Direct methods based on matrix factorizations are sometimes needed to ensure accurate solutions. For example, accurate solution of sparse linear systems is needed in shift-invert Lanczos to compute...
متن کاملDDtBe for Band Symmetric Positive Definite Matrices
We present a new parallel factorization for band symmetric positive definite (s.p.d) matrices and show some of its applications. Let A be a band s.p.d matrix of order n and half bandwidth m. We show how to factor A as A =DDt Be using approximately 4nm2 jp parallel operations where p =21: is the number of processors. Having this factorization, we improve the time to solve Ax = b by a factor of m...
متن کاملSparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach
Recent advances suggest that a wide range of computer vision problems can be addressed more appropriately by considering non-Euclidean geometry. This paper tackles the problem of sparse coding and dictionary learning in the space of symmetric positive definite matrices, which form a Riemannian manifold. With the aid of the recently introduced Stein kernel (related to a symmetric version of Breg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2018
ISSN: 1064-8275,1095-7197
DOI: 10.1137/16m1068487